Posts

Coinmetrics

Coin Metrics and Social Market Analytics (SMA) announced today a partnership to incorporate SMA’s Crypto Currency Data Feed into the Coin Metrics Market Data Platform.

Alternative data such as social media platforms and data feeds have become a vital source of information for traders, particularly in the Crypto Currency Markets. The SMA Crypto Currency Sentiment Feed will offer the Crypto Currency community a tool for including social media sentiment data in their trading and portfolio strategies and expand Coin Metrics market leading Crypto Asset market and network data products.

“As the Crypto Investing market continues to mature, institutional investors are demanding data from trusted partners. These institutions are looking to make data-driven decision by accessing sources of data that they understand from their legacy investing frameworks. We believe that the power of combining sentiment data with granular network and market data is fundamental to building a deeper understanding of crypto assets. Coin Metrics is excited to partner with SMA, who has a long history of providing sentiment data to traditional capital markets participants and share Coin Metrics’ principles and values. The ability to provide an all-in-one Crypto Financial Data solution is a huge convenience for institutions.” Comments Tim Rice Co-Founder and CEO of Coin Metrics.

“Artificial intelligence and Natural Language Processing are moving into our everyday lives at light speed, and perhaps into financial markets even faster than that. We feel strongly at SMA that participants in Crypto Currency markets will benefit from our unique process in this emerging field, both in its approach to filtering social media data and in the analytical methodology used to develop our proprietary metrics. We’re excited to partner with the Coin Metrics team to offer this service through a versatile industry leading platform” said Joe Gits, Co-Founder and CEO of SMA.

About Coin Metrics

Coin Metrics was founded in 2017 as an open-source project to provide the public with actionable and transparent network data. Today, Coin Metrics delivers market and network data, analytics and research to its community and wider industry. https://coinmetrics.io/

About Social Market Analytics, Inc.
Social Market Analytics quantifies social media data for traders, portfolio managers, hedge funds and risk managers using patent pending technology to detect abnormally positive or negative changes in investor sentiment. SMA produces a family of quantitative metrics, called S-Factors™, designed to capture the signature of financial market sentiment. SMA applies these metrics to data captured from social media sources to estimate sentiment for indices, sectors, and individual securities. A time series of these measurements is produced daily and on intraday time scales. For more information, including a User Guide to S-Factors™, please visit www.socialmarketanalytics.com

Social Market Analytics aggregates the intentions of professional investors as expressed on Twitter.  We identify these professional investors using our proprietary twelve factor ranking system.  One factor is the forward accuracy of Twitter accounts.  If a Twitter account is Tweeting bullishly based on our patented NLP process and the security subsequently moves higher over specified periods that account is deemed to be accurate over that period.  Overall accuracy is aggregated across time for each account.  We have been tracking account accuracy out-of-sample for the past seven years. – it is impossible to recreate this data.  SMA is the only provider with out-of-sample account accuracy.  We found significant variability in account accuracy for supposed professional investors.  Social Market Analytics account scoring algorithms are extremely effective in excluding non-professional professionals.

SMA’s Accurate Account algos aggregate expectations from the most accurate Twitter accounts for individual securities for a specified time period: 1-Day, 2-Day, 1-Week, and 1-Month holding periods.   Definition of ‘Accurate’ – correctly identifying directional movement of the security’s price.  We do not include size of move – their sentiment is positive and the security moved higher.

We calculate consensus expectations of these accurate accounts on individual securities.  Accurate account universes differ across holding periods. Some accounts are more accurate in the short-term (Day trades), while others are more accurate for longer holding periods (up to one month).

Securities with significant consensus for both long and short are available through our API’s, Widgets and in Reports.  Below is a widget identifying securities with the most positive and negative consensus.   In this example, SMA’s accurate account universe is currently 100 bullish on MCO over the next 24 hrs.  Positive, negative and neutral are identified separately.

accurate accounts

To discuss getting access to these or any other SMA data feed or widget please contactus@socialMarketAnalytics.com

Thanks,

Joe

Social Market Analytics aggregates the intentions of professional investors as expressed on Twitter.  We apply our patented filtering and natural language processing(NLP) to Tweets to proactively select Twitter accounts to use in our predictive metrics.  We track several metrics to gauge the predictive nature of our dataset.  For this blog I am going to illustrate one of these metrics.

2018 was a rough year for the SP500, it lost about 9% (rolling one year).  Given market loss and the high volatility we thought it would be an ideal dataset over which to run an experiment.  Two questions we get regularly are: How would your data perform in a bear market?  And what is the benefit of your NLP and account ratings systems? This blog will answer both questions from the perspective of 2018 market performance.

The table below illustrates performance of six theoretical portfolios.  These portfolios represent stocks with Social Market Analytics S-Scores of 2 or higher (Long signal) or Social Market Analytics S-Scores of -2 or lower (Short signal).  S-Score compares the tone of current Twitter conversations with average tone of Twitter conversations over the last twenty days.  Social Market Analytics has multiple baseline for multiple prediction periods.

Each security in our universe represents a proprietary Topic Model.  Each Topic is a collection of rules used to include or exclude specific Tweets from security buckets.  For example, if you are looking for Tweets about Ethan Allen furniture (ETH) you do not want to include Tweets about Ethereum Crypto Currency (Also symbol ETH) conversations.

We created portfolios with our account filtering algorithms and compared them with portfolios of all twitter accounts discussing our Equity Topic Models. The purpose of the run was to quantify the ability of our patented account filtering algorithms to identify professional, and hence more accurate, investors. Spoiler alert: Our account filtering improved the long/short return by 50% (18.73 for 2018 versus 12.53 NLP only)

NLP applied only:

The NLP only portfolios illustrate the power of our NLP process to accurately identify and fine grain score Tweets discussing securities and companies.  Our patented process reads each Tweet multiple times to identify if and how strongly someone is voicing a view of expected future performance.  The NLP only portfolios illustrate the predictive power of our NLP in isolation.  When you apply the Account filtering you get a predictive boost.

Account Filtered + NLP applied:

Account Filtered plus NLP portfolios illustrate the benefit of applying our account filtering metrics.  Early in the life of Social Market Analytics we learned its not just what is being said on Twitter but who is saying it. We developed proprietary metrics to identify investors more likely to be correct about the future direction of a security. When the conversation of these professional investors is significantly more positive than the average conversation over the last 20 days those securities significantly outperform.  When the conversation of these professional investors is significantly more positive than the average conversation over the last 20 days those securities significantly underperform.

 Portfolio Construction

Portfolios are constructed of securities with an S-Score of 2 or higher (long) or -2 or lower (short).  All portfolios are equally weighted.  A negative value for a short portfolio denotes a positive return to that portfolio.  Short portfolios are supposed to move lower.  All securities are entered on the Open based on a 9:10 am Eastern time S-Scores and exited on the Close.  There is no overnight exposure.

Result Analysis

We use SP500 as our performance benchmark.  SP return is calculated from open to close in the same manner as the selected securities. Using open to close performance the SP500 returned -16.89% for comparison.  As you can see from the table the S-Score > 2 outperformed the market and negative S-Score securities significantly underperformed the market (generating positive alpha).  The L/S portfolio with NLP only returned +12.54%, NLP plus account filtering improved that performance by 50% to +18.73%.  We do not illustrate this as a single factor model but removing 10% a year for slippage and commissions still significantly outperforms.

nlp-accountratingPlease contact us with any questions or to see how SMA’s NLP and filtering capabilities can be used in your investment process.  ContactUs@SocialMarketAnalytics.com

Social Market Analytics aggregates the intentions of professional investors as expressed on Twitter.  SMA factors are highly predictive over various time frames.  In June of 2017 Social Market Analytics launched a weekly re-balanced large cap sentiment based index.  This index is comprised of twenty-five stocks with the highest average Twitter sentiment over the prior week selected and re-balanced Friday afternoons from the CBOE Large Cap 450 Index.  This index has been published daily since that date and is available on all major feeds.

Last year the SP500 Index had a return of -8.4%.  The CBOE SMLC Index had a return of +.87%.  Below is a comparative return chart over the last year compared to the SP500.

For more information or to license this index please contact us at ContactUs@SocialMarketAnalytics.com

smlcw performance

 

 

 

This year has been tough for most investment strategies.  Firms using traditional sources of data are generating the same underwhelming returns.  Two years ago, Social Market Analytics, Inc.  (SMA)  (Twitter)   launched the SMLCW index in partnership with the CBOE.  This index is re-balanced weekly and comprised of the twenty-five securities selected from the CBOE large cap universe with the highest average S-Score over the prior week.  It’s A long only index of super-cap stocks with unusually positive Twitter conversations.

SMA publishes a family of metrics providing a full representation of the Twitter conversation across equities (US and LSE), commodities, currencies, ETF’s & Cryptos.

S-Score is a normalized representation of the current Twitter conversation of professional investors as identified by Social Market Analytics patented algorithms.  SMA has access to the full Twitter feed through our licensed partnership with Twitter and listens in real-time for any mention of topics and securities of interest.  These Tweets are scanned in real-time for sentiment and influence of the poster and compared to prior conversations over the look back period.  Securities with higher S-Scores subsequently outperform and securities with negative S-Scores under-perform.

SMA S-Scores are predictive over multiple prediction periods.  With seven years of out-of-sample data we can extend our comparison baselines and predict over longer periods.

Year-To-Date the SMLCW index is up over 7.5% while the SP500 is flat.  Subtracting a couple percent for commissions/slippage and the index is still significantly positive. This is not a back-test, this index has been live and on your quote screens for nearly two years.  YTD actual performance chart from the CBOE site is below.

SMLCW - YTD

As mentioned, this is a long only index.  During the recent market drawdown this long index has been performing.  SMA negative S-Score stocks have been moving lower at a significant rate – generating positive alpha.  Below is a chart of the SMLCW index compared to the SP500.  for any questions or to learn more please contact us at:  ContactUs@SocialMarketAnalytics.com.

Thanks,

Joe

 

Social Market Analytics has been creating security level sentiment metrics for six years.  As we build an out-of-sample history we are able to build longer holding period indexes. I have blogged about longer term factors before, this is the most comprehensive portfolio strategy built using sentiment level data.  This blog will discuss the application of sentiment to a long only 50 stock, re balanced annually, index.

SMA50 Index is a new, capitalization weighted index comprised of 50 stocks with these features:

  1. The highest average unique message source counts, from SMA’s filtered Twitter data stream, observed over a 50-day look back interval, and
  2. High daily average dollar trading volume (ADV), > $20 Mil, over a 50-day look back interval.  We are looking for liquid stocks.

The SMA50 index measures the aggregate performance of stocks with high levels of crowd sourced commentary and high market liquidity.

  1. SMA50 is reconstituted each year on March 15th.  The core constituents are selected once a year.  They are re-weighted monthly based on the below tilt methodologies.
  2. SMA50 is the “Parent Index” for SMA50 Factor Tilt Products

Below is the historical performance of the SMA50 Index.  We will add tilting to the index based on sentiment and momentum.

SMA501

The following factor tilt indexes are derived from the equity universe of the SMA50 parent index.  Factor Tilt Indexes are re-balanced monthly on the first market day of the month.

SMA-MT: Momentum Tilt

– Designed to deliver the performance of an equity momentum strategy by emphasizing stocks with high risk-adjusted price momentum.

  • A momentum value is determined for each stock in the SMA50 parent index Universe by combining the stock’s recent 12-month and 6-month price performance. This is the standard implementation of a price momentum value.
  • This momentum value is then risk-adjusted to determine the stock’s Momentum Score.
  • All securities in the SMA50 Universe are weighted by the product of their Momentum Score and their market cap, as follow:

Momentum Weight for SMA-MT  = Momentum Score * Market Capitalization Weight in the SMA50.  Momentum weights are normalized to sum to 100%.

SMA50_MT

SMA-ST: Sentiment Tilt

– Using SMA’s S-Score and SV-Score as factors, emphasize stocks with positive levels of social media sentiment and intensity, while attenuating stocks with low sentiment levels.

  • A composite factor score is determined for each stock in the SMA50 parent index Universe from the linear combination of the stock’s monthly S-Score and monthly SV-Score.
  • This composite factor score is used to determine the stock’s Sentiment Score.
  • All securities in the SMA50 Universe are weighted by the product of their Sentiment Score and their market cap, as follow:

Sentiment Weight for SMA-ST  =  Sentiment Score * Market Capitalization Weight in the SMA-50.  Sentiment weights are normalized to sum to 100%.

SMA50_ST

SMA-SMT: Blended Tilt

–Define a factor which is a combination of sentiment and momentum tilts.

  • A combined factor is determined for each stock in the SMA50 parent index Universe from a linear combination of the stock’s Momentum and Sentiment scores.  Initial results for the blended tilt factor used an equal weighting of Momentum and Sentiment scores.
  • This combine factor score is then standardized and used to determine the stock’s Senti-Momentum Score.
  • All securities in the SMA50 Universe are weighted by the product of their Senti-Momentum Score and their market cap, as follow:

Senti-Momentum Weight for SMA-SMT  =  Senti-Momentum Score * Market Capitalization Weight in the SMA-50.  Senti-Momentum weights are normalized to sum to 100%.

SMA50_Combined

Comparative performance for all four theoretical portfolios is below.

SMA Relative Performance

Overlaying standard benchmark performance you can clearly see the effectiveness of the SMA 50 with various tilt strategies to outperform the benchmarks.

SMA Relative Performance bench

The SMA 50 family of indexes provide a low turnover way to benefit from exposure to social sentiment.  To learn more please contact us at ContactUs@SocialMarketAnalytics.com

Social Market Analytics, Inc. (SMA) is celebrating six years of out-of-sample data in US Equities.   This data is unique in that it is a true representation of the Twitter conversation at each historical point-in-time.

Since our launch, SMA has become a leader in providing sentiment data feeds to the financial community.  Our data has become an integral part of our customers investment process.  Our customers are Quantitative Trading Firms, Hedge Funds, Sell Side Brokers, Traders and many others. SMA data is suitable for HFT, Quantitative Trading, Risk, Short Lending, Smart Beta, Fama-French Models, VAR among others.  Predictive signals range from a few minutes to quarterly.

SMA’s analytics generate high-signal data streams based on the intentions of market professionals.  Our patented machine learning process has produced six years of strongly predictive data as illustrated in the chart below.  This chart illustrates the subsequent performance of stocks based on pre-market open (9:10 am Eastern) sentiment scores.  Stocks with high sentiment subsequently out perform as illustrated by the Green line.  Stocks with strong negative sentiment go on to under perform as evidenced by the red line.  The blue line represents a theoretical equally weighted long short portfolio.  The table below illustrates Sharpe and Sortino ratios.

 

Fullhistory

Joe Gits, CEO of Social Market Analytics, recently spoke at the 34th annual CBOE Risk Management Conference.

Gits spoke at RMC about SMA’s patented technology, the Social Sentiment Engine, and Twitter’s relevance in financial markets.

Hosted by the Chicago Board Options Exchange, the RMC is an educational forum dedicated to exploring the latest products, trading strategies and tactics used to manage risk exposure and enhance yields. The RMC is the foremost financial industry conference designed for institutional users of equity derivatives and volatility products.

 

Today I will explore decile groupings based on S-Scores, and  plot cumulative subsequent returns. We typically focus on an S-Score > 2 for subsequent positive movements in stock prices, and an S-Score < -2 for negative movements in stock price.

Our metrics identify when a conversation becomes significantly more positive or negative than normal.  Most stocks have normal conversations on any given day.  On these days there are other factors driving the security. “Normal” conversation securities will typically follow the market, as you see in the SMA data set.  High sentiment out-performs and low sentiment under-performs,  Open to Close, and Close to Close, across Twitter and StockTwits.

The only filter we add is that the prior day’s closing price must be above $5, to avoid penny stocks.  Total return time series are used for returns, and time series are equal weighted.

The first chart illustrates subsequent Open to Close returns based on S-Score deciles at 9:10 a.m. Eastern time. As you can see, the deciles are in order with top decile securities out-performing and bottom decile securities under-performing.  SPY is represented by the black line and the universe is blue.

Twitter-Pre-Open

Pre-Market Close deciles are below.  S-Scores are taken at 3:40 p.m. Eastern and Close to Close returns are calculated.  Again, high S-Score securities out-perform and low S-Score securities under-perform, with the universe in the middle.

Twitter-Pre-Close-Close

StockTwits is the largest chat community for active traders.  Its users are professional traders discussing long and short positions. The below chart looks at S-Score decile returns based on StockTwits conversations.

Data is consistent across deciles.  A unique characteristic of the StockTwits feed is that there are significant short conversations.  The lowest two deciles have negative returns.  This is a function of the StockTwits community being able to short securities by direct short selling or taking net short options positions.

StockTwits PreOpen

Pre-market close deciles are below.

StockTwits CLose-close

To learn more about Social Market Analytics and the products we offer please visit our website, or contact us here.

Thanks,

Joe

People seem surprised that Britain voted to exit the EU.  We at SMA with our partners the CBOE are not nearly as surprised as everyone else.  Russell Rhoads from the CBOE has been blogging and Tweeting with SMA data for two weeks that it looks like the Brexit is going to happen.  Let’s look at the timeline.  Again, this is not a post analysis, these Tweets were out there 2 weeks ago!

Brexit Post on June 8, 2016:

Russell Rhoads, from CBOE wrote a blog about Brexit using the using SSE, the results indicated that an Exit is going to be the result of the vote.

Brexit1

The update from our partners at CBOE talked about the huge increase in Twitter volume about #brexit. One of the key observations was the #VoteLeave campaign had gained far more popularity than the remain campaign. To everyone who was looking, Twitter had shown the signs of a British Exit.

Brexit2

The final post on June 22 talked about strong social media indicators towards the exit. The #VoteLeave campaign has dwarfed the conversations of every other opinion, including the BBC debate. The prediction turned out to be true.

Brexit3

Twitter is the premier leading source of information and SMA can help you make sense of it.  Please contact SMA for more information at contactus@socialmarketanalytics.com